

1	High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in
2	a seagrass ecosystem in the central Red Sea
3	
4	Garcias-Bonet, Neus ¹ *; Fusi, Marco ¹ ; Ali, Muhammad ² ; Shaw, Dario R. ² ; Saikaly, Pascal E. ² ;
5	Daffonchio, Daniele ¹ and Duarte, Carlos M. ¹
6	
7	¹ King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal
8	23955-6900, Saudi Arabia
9	² King Abdullah University of Science and Technology, Water Desalination and Reuse Center,
10	Thuwal 23955-6900, Saudi Arabia
11	
12	
13	*corresponding author: Garcias-Bonet, Neus.
14	Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering,
15	King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-
16	6900, Kingdom of Saudi Arabia. Phone: +966 (012) 8082564.
17	E-mail: <u>neus.garciasbonet@kaust.edu.sa</u>
18	
19	Running head: Nitrogen removal by seagrasses
20	
21	Key words: Seagrass ecosystems, Coastal sediments, Atmospheric dinitrogen fixation,
22	Denitrification, Anaerobic ammonium oxidation (Anammox), Sediment microprofiles, Red Sea

23 Abstract

24	Nitrogen loads in coastal areas have increased dramatically with detrimental consequences for
25	coastal ecosystems. Shallow sediments and seagrass meadows are hotspots for denitrification,
26	favoring N loss. However, atmospheric dinitrogen (N2) fixation has been reported to support
27	seagrass growth. Therefore, the role of coastal marine systems dominated by seagrasses in the
28	net N2 flux remains unclear. Here, we measured denitrification, anaerobic ammonium oxidation
29	(anammox), and N ₂ fixation in tropical seagrass (Enhalus acoroides) meadow and the adjacent
30	bare sediment in a coastal lagoon in the central Red Sea. We detected high annual mean rates of
31	denitrification (34.9 \pm 10.3 and 31.6 \pm 8.9 mg N m^{-2} d^{-1}) and anammox (12.4 \pm 3.4 and 19.8 \pm
32	4.4 mg N m ⁻² d ⁻¹) in vegetated and bare sediments. The annual mean N loss was higher (8 and
33	63-fold higher) than the N ₂ fixed (annual mean=5.9 \pm 0.2 and 0.8 \pm 0.3 mg N m ⁻² d ⁻¹) in the
34	meadow and bare sediment, leading to a net flux of N2 from sediments to the atmosphere.
35	Despite the importance of this coastal lagoon in removing N from the system, N ₂ fixation can
36	contribute substantially to seagrass growth since N2 fixation rates found here could contribute up
37	to 36% of plant N requirements. In vegetated sediments, anammox rates decreased with
38	increasing organic matter (OM) content, while N2 fixation increased with OM content.
39	Denitrification and anammox increased linearly with temperature, while N ₂ fixation showed a
40	maximum at intermediate temperatures. Therefore, the forecasted warming could further increase
41	the N ₂ flux from sediments to the atmosphere, potentially impacting seagrass productivity and
42	their capacity to mitigate climate change but also enhancing their potential N removal.

43 **1. Introduction**

44	Nutrient supply is an important driver of marine primary production (Field et al., 1998;Howarth,
45	1988), where nitrogen (N) availability is believed to exert a key role in regulating net primary
46	production (Howarth, 1988) and driving eutrophication (Howarth and Marino, 2006) in coastal
47	ecosystems. Anthropogenic activities have led to a doubling of the global amount of fixed N,
48	with important changes in ecosystem productivity, diversity, air quality, and, ultimately, climate
49	(Fowler et al., 2013; Vitousek et al., 1997). Whereas natural atmospheric dinitrogen (N ₂) fixation
50	is globally estimated in 203 Tg N yr ⁻¹ (from which 140 Tg N yr ⁻¹ occurs in marine systems), the
51	anthropogenic contribution to new N supply has been estimated in 210 Tg N yr ⁻¹ , mainly
52	produced by N_2 -fixing crops, combustion of fossil fuels and the Haber-Bosch industrial reaction
53	(Fowler et al., 2013).
54	Coastal areas receive high inputs of fixed N by river and groundwater discharges and
55	atmospheric deposition (Galloway et al., 2003; Voss et al., 2013), causing severe problems
56	related to eutrophication and, potentially, dystrophic crisis (Galloway et al., 2003;Herbert, 1999).
57	High N inputs can be partially balanced through losses, as coastal marine sediments are hotspots
58	of denitrification (Devol, 2015), the conversion of nitrates and nitrites to N_2 (and N_2O partially),
59	leading to the loss of fixed N. Globally, coastal denitrification has been estimated to range from
60	4 to 8 Tg N yr ⁻¹ (Voss et al., 2013), which is modest compared to the global riverine input of 66
61	Tg N yr ⁻¹ (Seitzinger et al., 2005), N_2 fixation of about 15 Tg N yr ⁻¹ (Voss et al., 2013), and
62	atmospheric deposition of 1 Tg N yr ⁻¹ (Voss et al., 2013) to the coastal ocean. Recently,
63	however, anaerobic ammonium oxidation (anammox), the chemoautotrophic conversion of
64	ammonium and nitrite to N2, has also been regarded as an important process in marine

3

- 65 sediments. It has been estimated to account from nearly zero to up to 80% of the total N loss in
- 66 sediments (Dalsgaard et al., 2005;Devol, 2015).
- 67 Within the coastal ocean, seagrass ecosystems support high rates of N₂ fixation (McGlathery,
- 68 2008), particularly so in tropical and subtropical ecosystems (Welsh, 2000;Herbert, 1999).
- 69 Nitrogen supplied by N₂ fixation can account for up to 90% of plant nutrient requirements
- 70 (Hansen et al., 2000). It has been suggested that seagrasses have a close mutualistic relationship
- 71 with N₂-fixing bacteria inhabiting the rhizosphere (Herbert, 1999) and roots (Garcias-Bonet et
- al., 2016), where bacteria would benefit from root exudates and plants would benefit from fixed
- N supply. Yet, seagrass ecosystems also support high denitrification rates (Eyre et al., 2011b)
- and have been identified as key habitats for N loss in temperate (Eyre et al., 2016) and sub-
- 75 tropical (Eyre et al., 2011a) estuaries. Although anammox rates have not been assessed for
- seagrass sediments as yet, Salk et al. (Salk et al., 2017) recently reported very low anammox
- rates (0.18 μ mol N m⁻² h⁻¹), although accounting for 74% of N loss, on bare sediment adjacent to
- a *Zostera muelleri* meadow in a sub-tropical estuarine system. Therefore, the role of seagrass
- reconsistence as net sinks or sources of N remains unclear. Welsh et al. (Welsh et al., 2000)
- 80 reported very low denitrification rates compared to N₂ fixation rates in a temperate intertidal
- 81 seagrass meadow, whereas denitrification seems to exceed N₂ fixation in tropical (Alongi et al.,
- 82 2008) and sub-tropical (Eyre et al., 2011a) seagrass ecosystems. The balance between
- 83 transformations of inert atmospheric N₂ and reactive N in seagrass ecosystems is an important
- 84 driver of their net N budget (Hemminga et al., 1991), particularly so in areas with limited N
- 85 inputs from land. This is the case of seagrass meadows in arid regions lacking riverine inputs,
- 86 such as the Red Sea, characterized by general oligotrophic conditions in surface waters (Raitsos
- 87 et al., 2013;Weikert, 1987).

88	Nitrogen cycling in seagrass ecosystems is mediated by complex microbial communities
89	requiring specific physicochemical conditions, which may ultimately determine the balance
90	between transformations of inert atmospheric N_2 and reactive N. Seagrass meadows offer patchy
91	sediment conditions, affected by the release of organic exudates and oxygen by seagrass roots
92	(Pedersen et al., 1998), as well as the activity of burrowing infauna, which facilitates the
93	exchange and diffusion of nutrients and allows the oxygenation of deep sediment layers (Welsh,
94	2003). These processes contribute to high spatial heterogeneity in seagrass sediments, therefore,
95	modifying the redox potential (Enriquez et al., 2001) and allowing for the co-occurrence of
96	processes requiring different environmental conditions (Herbert, 1999;Hemminga et al., 1991).
97	Here, we assess the annual balance between losses of reactive N as N ₂ , via denitrification and
98	anammox, and gains of reactive N, by N ₂ fixation, in a tropical seagrass (Enhalus acoroides)
99	meadow and the adjacent bare sediment in a coastal lagoon located in the central Red Sea. We
100	first describe the environmental conditions in the sediments, based on microprofiles of oxygen
101	(O ₂), sulfide (H ₂ S), and redox, and then evaluate denitrification, anammox, and N ₂ fixation rates
102	in seagrass sediments and adjacent bare sediments. In addition, we analyze the thermal
103	dependence of denitrification, anammox, and N ₂ fixation throughout the annual in situ thermal
104	range. The Red Sea is one of the warmest seas and is warming faster than other seas (Chaidez et
105	al., 2017), thereby offering an opportunity to assess if the balance between losses of reactive N
106	as N_2 , via denitrification and anammox, and gains of reactive N, by N_2 fixation, may be affected
107	by warming.
108	
109	

111 **2. Materials and methods**

- 112 **2.1. Study site**
- 113 The study was conducted on an Enhalus acoroides seagrass meadow in Khor Almesena'a, a
- shallow enclosed coastal lagoon located in the central Red Sea (22°23'23.2" N, 39°08'08" E).
- 115 The study site was on a monospecific seagrass meadow at 2-m depth and the adjacent (about 5 m
- 116 from the edge of the seagrass meadow) bare sediment. The study was conducted between June
- 117 2016 and April 2017. We assessed sediment microprofiles (O₂, H₂S, and redox) and
- 118 denitrification, anammox, and N₂ fixation rates along five sampling events, two in summer (June
- and August 2016), one in the fall (November 2016), one in winter (February 2017), and one in
- 120 spring (April 2017). At each sampling time, we also monitored and recorded salinity and
- seawater temperature *in situ* every 10 min for 24 hours using an EXO1 Multiparameter Sonde
- 122 (YSI, USA).

123

124 **2.2. Sediment microprofiles**

125 At each sampling event, we performed O₂, H₂S, and redox microprofiles on vegetated sediments

126 and adjacent bare sediment reaching an average depth of 7 cm below the sediment surface, using

127 the Field Microprofiling system by Unisense (Aarhus, Denmark). At each sampling event, we

128 collected four sediment cores (40 cm length and 10 cm in diameter, two replicate cores per each

sediment type) containing at least 15 cm of undisturbed sediment. The cores were transported

- immediately to the laboratory and the microprofile analysis started within the next 3 h. Oxygen
- 131 microsensors (Ox-200), with a tip diameter of 200 µm, were calibrated in sterile water at oxygen
- 132 partial pressures of 0 and 21 kPa. For H₂S measurements, we used H₂S-200 microelectrodes (200
- 133 µm tip diameter). Calibration of the microsensors was performed following manufacturer

- 134 specifications and following Seitaj et al. (Seitaj et al., 2015). Redox measurements were
- 135 performed using Redox-200 microelectrodes (200 µm tip diameter). The electrode potentials in
- 136 the sediment were measured against the Unisense Ag-AgCl reference electrode and the
- 137 calibration was performed using two quinidrone solutions (10 mg ml⁻¹) buffered at pH 4 and 7,
- 138 respectively. Microsensors were positioned using a manual micromanipulator (Märzhäuser,
- 139 Wetzlar, Germany), and the tip position was visually controlled with a horizontally mounted
- 140 USB stereomicroscope (Veho VMS-004). Oxygen, H₂S, and redox microprofiling measurements
- 141 started 10 min after embedding and lasted about 4 hours per sediment core. The sediment surface
- 142 position was adjusted using the software Sensor Trace Suite v2.7.100 (Unisense, Aarhus,
- 143 Denmark). The microprofiles were performed under light and dark conditions per triplicate. The
- 144 cores were left for 12 h under dark conditions before starting the microprofiles under dark
- 145 conditions.
- 146

147 **2.3. Denitrification and anammox rates**

148 We measured denitrification and anammox rates by a batch incubation experiment with ¹⁵N-

149 labeled nitrogen compounds in vegetated sediment and the adjacent bare sediment. At each

150 sampling event, we collected 6 cylindrical plastic cores (40 cm length and 5 cm in diameter, 3

151 replicate cores per each sediment type) containing at least 15 cm of undisturbed sediment. The

152 cores were transported immediately to the laboratory. Denitrification and anammox rates were

- 153 measured at three sediment horizons: from sediment surface to 1 cm deep, from 1 to 2 cm deep
- and from 2 to 3 cm deep. ¹⁵N isotope pairing technique was applied for measurement of N-
- 155 related activities. The principle and procedure for measuring N₂ production via anammox were
- 156 essentially based on a ¹⁵N-tracer incubation method reported elsewhere (Thamdrup and

157	Dalsgaard, 2002). However, in this study, we used a simpler method developed previously
158	(Amano et al., 2011; Yoshinaga et al., 2011). Briefly, about two grams of sediments was
159	dispensed into 10-ml glass serum vials, which were sealed with butyl rubber stoppers and
160	aluminum caps. All these procedures were performed in an anaerobic chamber (Coy Laboratory
161	Products, Grass Lake Charter Township, MI) where O ₂ concentration was <1 ppm. Headspace in
162	the vials was exchanged with highly pure He gas (>99.9999%) by vacuuming and purging.
163	Positive pressure (50-75 kPa) was added to the headspace to prevent unintentional contamination
164	with ambient air during the incubation and gas sampling. The vials containing oxygen-free
165	sediment suspensions were pre-incubated overnight in the dark to eliminate the remaining
166	substrates. Four different combinations of ¹⁵ N labeled and/or unlabeled substrates were
167	supplemented from anoxic stock solutions to these pre-incubated vials: 1) 0.5 mM 15 NH ₄ Cl (\geq 98
168	atom % ¹⁵ N, Sigma-Aldrich, Inc.); 2) 0.5 mM ¹⁵ NH ₄ Cl and 0.5 mM Na ¹⁴ NO ₂ (Sigma-Aldrich,
169	Inc.); 3) 0.5 mM Na ¹⁵ NO ₂ (98 atom % 15 N, Sigma-Aldrich, Inc.); and 4) 0.5 mM K ¹⁵ NO ₃ (98
170	atom % ¹⁵ N, Sigma-Aldrich, Inc.). The concentration of the ¹⁵ N-labeled and unlabeled substrate
171	was chosen as suggested previously (Amano et al., 2007). The vials were incubated under anoxic
172	conditions at <i>in situ</i> temperature. The concentrations of ${}^{29}N_2$ and ${}^{30}N_2$ gas were determined by
173	gas chromatography-mass spectrometry (GC-MS) analysis at different intervals as described
174	previously (Isobe et al., 2011a;Isobe et al., 2011b). In combination with GC inlet and peak
175	integration software, a quadrupole MS system can be used to determine N2 production rates as
176	low as a few nmol N $l^{-1} d^{-1}$ (Holtappels et al., 2011). Fifty microliters of headspace gas were
177	collected using a gas-tight syringe (VICI; Baton Rouge, LA, USA), immediately injected into a
178	GC (Agilent 7890A system equipped with a CP-7348 PoraBond Q column) combined with
179	5975C quadrupole inert MS (Agilent Technologies; Santa Clara, CA, USA). The $m/z = 29$ and

8

180	30 values monitored at the same retention time for each measurement. The amounts of $^{29}\text{N}_2$ and
181	$^{30}N_2$ gas were determined using a standard curve prepared with $^{30}N_2$ standard gas (> 98% purity)
182	(Cambridge Isotope Laboratories; Tewksbury, MA, USA). The potential denitrification and
183	anammox rates were estimated from the production of $^{29}\mathrm{N}_2$ and $^{30}\mathrm{N}_2$ using the equations
184	described elsewhere (Holtappels et al., 2011). All the batch tests were performed in triplicate.
185	Finally, the denitrification and anammox rates were standardized to surface area integrating 3 cm
186	sediment depth by averaging the rates measured at different horizons and taking into account the
187	sediment bulk density.
188	
189	2.4. Atmospheric N ₂ fixation rates
190	We measured N ₂ fixation by Acetylene Reduction Assay (Capone and Taylor, 1980) in seagrass

191 roots, seagrass shoot epiphytes, vegetated sediment, and adjacent bare sediment. At each 192 sampling time, we carefully collected shoots containing roots and placed them in zip-lock plastic bags. The shoots were immediately transported to the laboratory in a cooler box protected from 193 194 sunlight. We also collected six cylindrical plastic cores (40 cm length and 10 cm in diameter, 195 three replicate cores per each sediment type) containing at least 15 cm of undisturbed sediment. 196 The sediment cores were transported immediately to the laboratory. Once in the laboratory the 197 roots were carefully separated from shoots and rinsed with sterilized seawater. Then, we placed 198 10 g (fresh weight) of healthy roots in a 250 ml glass bottle. Similarly, we placed one shoot 199 (without roots) in a 500 ml glass bottle. We added 100 and 250 ml of fresh seawater collected 200 from the same location to the root and shoot samples, respectively, and the bottles were closed 201 with lids fitted with gas-tight valves. In parallel, the sediment from the cores was extruded 202 carefully using a plunger, and the sediment was cut in four different horizons: from sediment

203	surface to 1 cm deep, from 1 to 2 cm deep, from 2 to 3 cm deep, and from 9 to 10 cm deep. We
204	added the additional deeper sediment layer (9 to 10 cm), matching the maximum depth at which
205	seagrass roots were detected. For each horizon, 80 ml of sediment was placed in a 500 ml glass
206	bottle. Then, we added 200 ml of fresh seawater collected from the same location and the bottles
207	were closed with a lid fitted with a gas-tight valve. Finally, we added acetylene-saturated
208	seawater, prepared according to Wilson et al. (Wilson et al., 2012), through the gas-tight valve in
209	order to achieve a final acetylene concentration of 4 mM (10 ml to roots and 20 ml to shoots and
210	sediment incubations). We run the root and shoot incubations in triplicate. Similarly, we run the
211	sediment incubation in triplicate for each horizon and sediment type. The roots and sediment
212	slurries were incubated under dark conditions, and the shoots were incubated mimicking the
213	natural photoperiod (12 h light at 200 μ mol photons m ⁻² s ⁻¹ : 12 h dark) at <i>in situ</i> temperature.
214	We sampled the headspace five times, distributed along the 24 h incubations. Specifically, we
215	withdrew 3 ml of air from the headspace with a gas-tight syringe. The headspace air sample was
216	immediately injected into a 3 ml vacuum vial for further analysis of ethylene concentration on a
217	gas chromatographer equipped with a flame ionization detector and coupled to a mass
218	spectrometer (MS-FID-GC, Agilent 7890) using a GS-CarbonPLOT column (60 m \times 320 μm
219	× 1.5 μ m, Agilent Technologies, USA). We built a calibration curve using three ethylene
220	standards of known concentration (1.5, 9 and 93 ppm) and Helium as a balance gas, supplied by
221	Abdullah Hashim Industrial Gases & Equipment Co. Ltd. (Jeddah, Saudi Arabia). We estimated
222	the concentration of dissolved ethylene before equilibrium with the headspace, from the ethylene
223	concentration in the equilibrated air according to Wilson et al. (Wilson et al., 2012) and applying
224	the solubility coefficient of ethylene extracted from Breitbarth et al. (Breitbarth et al., 2004) as a
225	function of temperature and salinity.

226	We run the following negative controls at each sampling event: i) roots, shoots, and sediment
227	without addition of acetylene-saturated seawater in order to confirm that ethylene was not
228	naturally produced by our samples, and ii) seawater collected from the study site and used in the
229	preparation of the incubations with addition of acetylene-saturated seawater in order to measure
230	the N ₂ fixation due to pelagic diazotrophs. The ethylene production rate measured in the
231	seawater control was subtracted from the ethylene production rates detected in our samples. The
232	net ethylene rates (after subtracting the background seawater rate) were converted into N_2
233	fixation rates by applying the common ratio of 3 mol of acetylene:1 mol of N_2 (Welsh, 2000).
234	At the end of the incubation, we dried the roots, shoots, and sediment samples at 60°C and
235	recorded the dry weight for further calculations. Moreover, we calculated the sediment organic
236	matter (OM) content of each replicate sediment horizon by loss on ignition (Dean Jr, 1974).
237	Then, the sediment N_2 fixation rates were standardized to surface area integrated over 3 cm
238	sediment depth by averaging the rates measured at the first 3 sediment horizons and taking into
239	account the sediment bulk density in order to compare N2 fixation to denitrification and
240	anammox rates. The N ₂ fixation rates of roots and shoot epiphytes were standardized to surface
241	area taking into account the biomass density.
242	

243 **2.5. Statistical analysis**

Differences in OM content (our continuous response variable) were tested considering the categorical explanatory variables 'sediment type' (2 levels: vegetated and bare sediments) with the non-parametric Wilcoxon test. Furthermore, we analyzed OM content considering also as explanatory variable 'sediment horizons' (4 levels: from sediment surface to 1 cm deep, from 1 to 2 cm deep, from 2 to 3 cm deep, and from 9 to 10 cm deep), and 'sampling events' (5 levels:

- 249 June, August, November, February and April) by performing a Generalized Linear Model
- 250 (GLM) and considering their interaction. All the factors were fixed and orthogonal.
- 251 Differences in O₂ concentration and H₂S concentration between vegetated and bare sediments
- and between light and dark were tested by nonparametric Wilcoxon test.
- 253 Differences in denitrification, anammox, and N₂ fixation rates per gram of sediment along the
- 254 sediment horizons between vegetated and bare sediments were tested by Wilcoxon matched-
- 255 pairs signed rank test. Similarly, we test for differences between denitrification, anammox, and
- 256 N₂ fixation rates by Wilcoxon matched-pairs signed rank test. Moreover, we analyzed the
- 257 difference in denitrification, anammox, and N₂ fixation rates per gram of sediment considering
- the type of sediment and the sediment OM content as our categorical and continuous explanatory
- 259 variables, respectively. Since the distribution of denitrification, anammox, and N₂ fixation rates
- 260 per gram of sediment was not normal, we used a GLM to test for differences.
- 261 Finally, we analyzed the difference in depth-integrated denitrification, anammox, and N₂ fixation
- 262 rates, our continuous response variables, considering the type of sediment and sampling event as
- 263 our categorical explanatory variables. We furthermore analyzed the difference in depth-
- 264 integrated denitrification, anammox, and N₂ fixation rates, considering the type of sediment and
- 265 temperature as our categorical and continuous explanatory variables, respectively. Since the
- 266 distribution of the depth-integrated denitrification and N₂ fixation rates was not normal, we used
- a GLM to test for differences, while we used a linear model test to analyze the depth-integrated
- anammox rates as its distribution was normal. The effect of temperature and sediment type on
- 269 the net N₂ flux was tested by using a linear model. All statistical analyses were performed using
- 270 JMP (SAS Institute Inc., USA) and PRISM (GraphPad Software Inc., USA) statistical software.
- 271

272 **3. Results**

273 **3.1. Water and sediment properties**

- 274 The *in situ* daily average seawater temperature ranged from 22.3°C in February to 32.5°C in June
- 275 (Table 1), while annual mean salinity was 41.2 ± 0.4 PSU. The OM content was consistently
- 276 higher (about 40% higher) in the vegetated sediments compared to the bare sediment
- 277 (nonparametric Wilcoxon test, p < 0.0001), with annual mean (± SEM) OM content of 13.5 ± 0.1
- and $8.5 \pm 0.1\%$ of sediment dry weight, respectively, and decreased with increasing depth (Fig.
- 1a). The sediment OM content significantly differed among sediment type, sampling event, and
- sediment horizon (GLM; sediment type*sampling event*sediment horizon $\chi^2_{12,80} = 28.7$; p =
- 281 0.004). The maximum depth-integrated mean OM content in vegetated sediments (15% of
- sediment dry weight) and bare sediments (9.5% of sediment dry weight) was found in November
- and June, respectively.
- 284 Sediment O₂ microprofiles significantly differed between vegetated and bare sediments during
- light and dark measurements (nonparametric Wilcoxon test, p = 0.0002 and p < 0.0001,
- respectively) and between light and dark conditions in both vegetated and bare sediments
- 287 (nonparametric Wilcoxon test, p < 0.0001 and p < 0.0001, respectively). The vegetated and bare
- 288 sediments were anoxic below the sediment surface but the sediment depth at which anoxic
- 289 conditions prevailed varied depending on sediment type, light or dark conditions, and the time of
- 290 the year (Fig. 1b, c). In vegetated sediments, the anoxic conditions appeared at deeper layers than
- 291 in the bare sediments. Similarly, O₂ diffused into deeper sediment layers during light incubations
- than during dark incubations for both vegetated and bare sediments. On average, the vegetated
- sediments were anoxic at 1 ± 0.3 cm and 0.7 ± 0.1 cm below the surface under light and dark
- 294 conditions, respectively, while bare sediments were anoxic at 0.6 ± 0.2 cm and 0.4 ± 0.1 cm

295	below the surface under light and dark conditions, respectively. In some vegetated sediments
296	under light conditions (Fig. 1b1, b3), the O2 concentration increased again at deep layers, likely
297	indicating O ₂ release by seagrass roots into the sediment or O ₂ diffusion through animal burrows.
298	Sediment H ₂ S microprofiles were highly variable along the year (Fig. 1b, c). Under light
299	conditions, the H ₂ S concentration in bare sediments (median = $1.28 \ \mu mol H_2S \ L^{-1}$) was
300	significantly higher than in vegetated sediments (median = 0 μ mol H ₂ S L ⁻¹) (nonparametric
301	Wilcoxon test, $p < 0.0001$). Similarly, under dark conditions, the H ₂ S concentration in bare
302	sediments (median = $1.17 \mu mol H_2 S L^{-1}$) was significantly higher than in vegetated sediments
303	(median = 0.008 μ mol H ₂ S L ⁻¹) (nonparametric Wilcoxon test, $p < 0.0001$). In vegetated
304	sediments, the H_2S concentration was very low (< 0.5 μM) during the summer months (June and
305	August, Fig. 1b1-2) and the maximum H_2S concentration (10.4 μ M) was detected in November
306	under dark conditions (Fig. 1b3) at 2.2 cm below the sediment surface. Bare sediments showed
307	similar H ₂ S profiles under light and dark conditions, except for the dark measurement in
308	November. The maximum H_2S concentration in bare sediments (15.2 μ M) was also detected in
309	November under light conditions, but it was higher than that in vegetated ones and at deeper
310	sediment layers (Fig. 1c3), about 6 cm below the surface. The redox potential ranged from about
311	550 mV to -450 mV (Fig. S1) and decreased abruptly with increasing sediment depth.
312	
212	2.2 Denituification anomaly and N. fination rates

313 **3.2. Denitrification, anammox and N2 fixation rates**

314 Sediment denitrification rates per gram of sediment were consistently higher in vegetated

- sediments compared to bare sediments (Wilcoxon matched-pairs signed rank test, p = 0.0015,
- Fig. 2a). The highest denitrification rates were detected in summer (June and August, Fig. 2a1-2)
- 317 for both vegetated and bare sediments. In vegetated sediments, the maximum denitrification rate

318	$(20.52 \pm 0.6 \text{ nmol N g DW}^{-1} \text{ h}^{-1})$ was found in June and was almost twice the maximum rate
319	measured in bare sediments (11.5 \pm 4.2 nmol N g DW ⁻¹ h ⁻¹), which was found in August.
320	Although the rates varied throughout the year, the maximum denitrification rates took place
321	between 1 and 2 cm below surface, with minimum rates detected in the sediment surface.
322	Anammox rates per gram of sediment were large but consistently lower than denitrification rates
323	(Wilcoxon matched-pairs signed rank test, $p < 0.0001$) and without significant difference
324	between vegetated and bare sediments (Wilcoxon matched-pairs signed rank test, $p = 0.6788$,
325	Fig. 2b). In vegetated sediments, the maximum anammox rate $(6.88 \pm 0.5 \text{ nmol N g DW}^{-1} \text{ h}^{-1})$
326	was detected in August and was similar to the maximum rate in bare sediments (6.89 ± 0.4 nmol
327	N g DW ^{-1} h ^{-1}), measured in April. The minimum denitrification and anammox rates were
328	measured in November. Sediment N_2 fixation rates per gram of sediment (Fig. 2c) were
329	significantly lower than denitrification and anammox rates (Wilcoxon matched-pairs signed rank
330	test, $p < 0.0001$ and $p < 0.0001$, respectively), with maximum N ₂ fixation rates (1.25 ± 0.1 nmol
331	N g DW ^{-1} h ^{-1}) detected in November, in contrast to the denitrification and anammox patterns.
332	The N ₂ fixation rates were significantly higher in vegetated sediments than those rates measured
333	in bare sediments (Wilcoxon matched-pairs signed rank test, $p < 0.0001$, Fig. 2c). Denitrification
334	rates per gram of sediment differed between vegetated and bare sediments at different sediment
335	horizons, however sediment OM content did not have a significant effect (GLM; sediment type
336	$\chi^2_{1,28} = 5.6, p < 0.05$; OM content $\chi^2_{1,28} = 3.1, p = 0.08$) (Fig. 3a). The sediment OM content and
337	the type of sediment had a significant effect on anammox rates (GLM; sediment type $\chi^2_{1,28} = 4.5$,
338	$p < 0.05$; OM content $\chi^2_{1,28} = 5.1$, $p < 0.05$) and N ₂ fixation rates (GLM; sediment type*OM
339	content $\chi^2_{1,36} = 14.2, p < 0.001$). Anammox rates decreased with increasing OM content in

340	vegetated sediments ($Y = -1.04X + 17.8$, $p < 0.05$, Fig. 3b), while N ₂ fixation rates increased
341	with increasing OM content in vegetated sediment ($Y = 0.24X - 2.9$, $p < 0.0001$, Fig. 3c).
342	The differences in denitrification rates between vegetated and bare sediment rates became
343	smaller when depth-integrated $(0 - 3 \text{ cm})$ rates were compared (Fig. 4a), largely due to the
344	higher (1.5-fold) bulk density in bare sediments compared to vegetated sediments. Depth-
345	integrated denitrification rates significantly differed among sampling events but not between
346	vegetated and bare sediments (GLM; sampling event $\chi^2_{4,24} = 70.6$, $p < 0.0001$; sediment type
347	$\chi^2_{1,24} = 3.1, p = 0.08$). Depth-integrated anammox rates (Fig. 4b) significantly differed among
348	sampling events and between vegetated and bare sediments (lm, sampling event*sediment type;
349	$F_{4,29} = 30.05, p < 0.0001$). Similarly, depth-integrated N ₂ fixation rates (Fig. 4c) significantly
350	differed among sampling events and between vegetated and bare sediments (GLM, sampling
351	event*sediment type $\chi^2_{4,20} = 73.31, p < 0.0001$).
352	Temperature had a significant effect on depth-integrated denitrification rates regardless of the
353	type of sediment (GLM; temperature $\chi^2_{1,27} = 16.67$, $p < 0.0001$; sediment type $\chi^2_{1,27} = 0.53$, $p =$
354	0.46;). Depth-integrated denitrification rates increased linearly with temperature ($Y = 3.569X - $
355	65, Fig. 5a). Temperature and sediment type had a significant effect on depth-integrated
356	anammox rates (lm; temperature $F_{1,29} = 14.8$, $p = 0.0007$; sediment type, $F_{1,29} = 7.7$, $p = 0.01$),
357	with rates increasing linearly in vegetated ($Y = 1.3X - 20.36$) and bare ($Y = 1.3X - 16.94$)
358	sediments (Fig. 5b). However, depth-integrated N2 fixation rates did not increase linearly with
359	temperature and the differences in rates were explained by sediment type (GLM; sediment type
360	$\chi^2_{1,27} = 4.93$, $p = 0.03$). Sediment N ₂ fixation rates in vegetated and bare sediments showed a
361	different thermal response than denitrification and anammox processes, with maximum rates
362	reported at 28.5 $^{\circ}$ C and decreasing rates at either lower and higher temperatures (Fig. 5c). N ₂

- 363 fixation rates followed a second-degree polynomial curve ($Y = 16.94 0.45X 0.13X^2$, $r^2 =$
- 0.40, p < 0.05) in vegetated sediments. N₂ fixation rates in seagrass roots and epiphytes showed
- the same annual pattern that the rates reported for the rhizosphere. The maximum rates in
- 366 seagrass roots $(21.9 \pm 210.7 \,\mu\text{g N g DW}^{-1} \,\text{d}^{-1})$ and epiphytes $(10.4 \pm 1.5 \,\mu\text{g N g DW}^{-1} \,\text{d}^{-1})$ were
- 367 also recorded in November when *in situ* seawater temperature was 28.5°C (Fig. 5c).
- 368 The net N₂ fluxes ranged from 3.6 ± 0.8 and 19.73 ± 0.9 mg N m⁻² d⁻¹ in November, to $85.1 \pm$
- 369 3.7 and 85.1 ± 2.6 mg N m⁻² d⁻¹ in summer months for the seagrass meadow and bare sediments,
- 370 respectively (Fig. 6). The net N₂ flux significantly differed among sampling events but not
- between sediment type (lm; sampling event $F_{4,9} = 24.76$, p = 0.004; sediment type, $F_{1,9} = 1.83$, p
- 372 = 0.25). Net N₂ flux increased linearly with temperature (Y = 4.99X 91.86, $r^2 = 0.43$, p < 100
- 373 0.05, Fig. 7).
- 374

375 **4. Discussion**

376 The sediment organic matter content in the Red Sea lagoon system studied here was extremely 377 high, especially in the vegetated sediments (mean = 13.5%), compared to the values reported for 378 other seagrass sediments (mean = 4.1%, (Kennedy et al., 2010)). The higher sediment organic 379 matter content in vegetated sediments, compared to bare sediments, corroborates the evidence 380 that seagrasses accumulate and store large amounts of organic carbon in their sediments (Duarte 381 et al., 2005). In addition, seagrasses modified the physicochemical conditions of the sediment 382 (Enriquez et al., 2001), as reflected in higher O_2 and lower sulfide sediment concentrations than those in the adjacent bare sediment. Moreover, O₂ profiles showed higher variability in vegetated 383 384 sediments. This can be directly related to bioturbation (Kristensen et al., 2012) and to the radial

- 385 oxygen loss by roots leading to oxic layers at depth (Pedersen et al., 1998), enhancing the
- 386 complexity and heterogeneity of seagrass sediments.
- 387 The denitrification rate in *E. acoroides* sediments reported here (annual mean = 34.9 ± 10.3 mg
- 388 N m⁻² d⁻¹) is 6-fold higher than the rate reported for a restored *Zostera marina* meadow in
- 389 Virginia using an *in situ* push-pull incubation method (Aoki and McGlathery, 2017), 1.3 to 2.5-
- 390 fold higher than the rate previously reported for tropical meadows dominated by *E. acoroides* on
- 391 slurries from the top 5 cm sediment (Alongi et al., 2008), comparable to the rates reported for
- temperate seagrasses (Eyre et al., 2016), and 8-fold lower than the rates reported for sub-tropical
- 393 estuarine seagrasses (Eyre et al., 2011a) using *in situ* benthic chambers. Denitrification rates
- 394 were higher in vegetated sediments than bare sediments when expressed per gram of dried
- 395 sediment. However, we did not find differences between depth-integrated denitrification rates in
- vegetated and bare sediments (annual mean = 34.9 ± 10.3 and 31.6 ± 8.9 mg N m⁻² d⁻¹,
- 397 respectively) contrary to previous findings (Eyre et al., 2011b).
- 398 The potential sediment anammox rates reported here, ranging from 0.5 to 6.9 nmol N g DW⁻¹ h⁻
- ¹, are comparable to potential anammox rates reported elsewhere (i.e. from 0 to 8 nmol N cm⁻³ h⁻
- 400 ¹ in subtropical mangrove sediments (Meyer et al., 2005); from <0.5 to 7.6 nmol N g DW⁻¹ h⁻¹ in
- 401 marine sediments from a Fjord in Sweden (Brandsma et al., 2011) and from 0 to 3 nmol N cm⁻³
- h^{-1} in sandy sediments in the southern North Sea (Bale et al., 2014)). However, the potential
- 403 sediment anammox rates detected here (annual mean depth-integrated anammox rates = $12.4 \pm$
- 404 3.4 and 19.8 ± 4.4 mg N m⁻² d⁻¹ in vegetated and bare sediments, respectively) are higher than
- 405 the only estimate available, to the best of our knowledge, for a seagrass ecosystem (0.06 mg N
- $406 m^{-2} d^{-1}$ in bare sediment adjacent to a sub-tropical seagrass meadow in Australia on intact cores
- 407 (Salk et al., 2017)). The contribution of anammox to the total loss of N reported here (27 and

- 408 38% in vegetated and bare sediments, respectively, Fig. S2) is smaller than the contribution
- 409 reported by Salk et al. (Salk et al., 2017), with anammox accounting for 64 to 86% of the total N
- 410 loss, but still within the range of anammox-supported N losses reported for other marine
- 411 sediments (Devol, 2015;Bale et al., 2014).
- 412 The maximum N₂ fixation rates reported for *E. acoroides* sediments here $(6.3 \pm 0.5 \text{ mg N m}^{-2} \text{ d}^{-1}$
- 413 ¹) are lower than the previously reported maximum N₂ fixation rates in sediments of a tropical
- 414 mixed meadow dominated by *E. acoroides* (19.4 \pm 3.2 mg N m⁻² d⁻¹, (Alongi et al., 2008)).
- 415 Similarly, Moriarty and O'Donohue (Moriarty and O'Donohue, 1993) reported higher N₂ fixation
- 416 rates for a mixed meadow dominated by *E. acoroides* $(25 \pm 2.6 \text{ mg N m}^{-2} \text{ d}^{-1})$ than those
- 417 reported here during the same time of the year $(16.4 \pm 0.4 \text{ mg N m}^{-2} \text{ d}^{-1})$ although with a smaller
- 418 contribution from leaf epiphytes $(4.2 \pm 0.1 \text{ mg N m}^{-2} \text{ d}^{-1})$ compared with our N₂ fixation rates
- from epiphytes $(7.9 \pm 1.1 \text{ mg N m}^{-2} \text{ d}^{-1})$. The N₂ fixation rates supported by roots are in
- 420 agreement with previous findings of N2-fixing bacteria in association with seagrass roots
- 421 (Garcias-Bonet et al., 2012;Garcias-Bonet et al., 2016). Moreover, the N₂ fixation rates
- 422 previously reported for surface-sterilized *E. acoroides* roots (0.13 mg N m⁻² d⁻¹ (Raja et al.,
- 423 2012)) are 17-fold lower than the rates reported here $(2.3 \pm 1.5 \text{ mg N m}^{-2} \text{ d}^{-1})$ for the same
- 424 seawater temperature (29°C), pointing out at the role of bacteria inhabiting the rhizoplane of *E*.
- 425 *acoroides* roots in nutrient supply.
- 426 The highest N₂ fixation rates in vegetated and bare sediments coincided with the highest
- 427 sediment sulfide concentrations (10.4 and 15.2 μmol H₂S L⁻¹ in vegetated and bare sediments,
- 428 respectively), suggesting a contribution of sulfate-reducing bacteria to the pool of N₂-fixing
- 429 bacteria, as reported in other seagrass rhizospheres (Welsh et al., 1996). Although sulfide has
- 430 detrimental effects on seagrasses (Garcias-Bonet et al., 2008), the sulfide concentrations in the

- 431 vegetated sediments were generally below the threshold limit of 10 μ mol H₂S L⁻¹ for seagrass
- 432 decline (Calleja et al., 2007).

433	The contrasting annual patterns in denitrification and anammox compared to those of N_2 fixation,
434	with highest rates of denitrification and anammox in summer and spring while maximum N_2
435	fixation in autumn (Fig. 3), suggest differential specific thermal responses. The linear increase of
436	denitrification and anammox with temperature found here was already described for net sediment
437	N ₂ fluxes in estuaries (Nowicki, 1994). Similarly, the thermal response of N ₂ fixation found here,
438	with maximum rates at intermediate temperatures (29°C) and a decrease in rates at lower and
439	higher temperatures, is in agreement with the notable decrease in N_2 fixation rates at 35°C
440	reported for cyanobacteria in soil crusts (Zhou et al. 2016). Moreover, the sediment microbial
441	activity is modulated, as well, by the quantity and quality of the OM. Decomposition and
442	remineralization rates of OM depends on its lability (Herbert, 1999) which is indicated by the
443	C:N:P ratio and differs among sources (Enríquez et al., 1993). OM from phytoplankton
444	decomposes faster than OM from seagrasses, due to their higher N content and therefore lower
445	C:N:P ratios. Eyre et al. (Eyre et al., 2013) demonstrated that the source of the OM, and
446	therefore, its C:N ratio controls denitrification rates in coastal sediments. Tibbles et al. (Tibbles
447	et al., 1994) showed an increase in sediment N_2 fixation following the addition of complex plant
448	polysaccharides and Fulweiler et al. (Fulweiler et al., 2013) argued that an increase in the C:N
449	ratio of OM was responsible for the decrease in denitrification and the increase in N_2 fixation, in
450	agreement with the effect of OM reported here.
451	The net N ₂ fluxes in the Red Sea lagoon ecosystem indicates this ecosystem supports a net loss
452	of reactive N as N ₂ gas throughout the year, as sediment denitrification and anammox
453	consistently exceeded N ₂ fixation in sediment and seagrass tissues. Alongi et al. (Alongi et al.,

454	2008) also reported higher denitrification than N ₂ fixation rates in an <i>E. acoroides</i> meadow.	
455	Integrating the average seasonal rates, we estimate the annual N loss in 14.9 g N m ^{-2} yr ^{-1} in the	
456	seagrass meadow and 18.2 g N m ^{-2} yr ^{-1} in bare sediments. Despite the lack of rivers discharging	
457	into the Red Sea, the occasional heavy rains, groundwater discharge, and atmospheric deposition	
458	might lead to high reactive N loads reaching coastal systems (Voss et al., 2013). Therefore, the	
459	high denitrification and anammox rates in this coastal lagoon provide a mechanism adding	
460	resistance to excess N inputs (Zarnoch et al., 2017;Galloway et al., 2003), which might lead to	
461	permanent seagrass losses due to hypoxia after algal blooms produced by severe eutrophication	
462	(Herbert, 1999;Duarte, 1995). Nevertheless, N2 fixation plays an important role in supporting	
463	seagrass meadows in the Red Sea, as the maximum N2 fixation rate reported here could	
464	contribute from 7 to 36.4% of the N requirements to support <i>E. acoroides</i> growth, calculated	
465	using previous estimates of biomass productivity (Alongi et al., 2008;Pedersen et al., 2016) and	
466	measured N content of leaf tissues in this central Red Sea lagoon (Almahasheer et al., 2017).	
467	Furthermore, the N isotopic composition reported for E. acoroides tissues in this location	
468	$(\delta^{15}N_{\text{leaves}} = 0.17\% \text{ and } \delta^{15}N_{\text{rhizomes}} = -1.56\%$ (Almahasheer et al., 2017)), provides evidence for	
469	the atmospheric origin of the assimilated N.	
470	The differential apparent thermal response of denitrification and anammox, which increased with	
471	increasing temperature, and N ₂ fixation, which showed a maximum at about 28°C, leads to an	
472	increase in the net N_2 flux with temperature (fig. 6). This has important implications in a context	
473	of rapid warming of the Red Sea (Chaidez et al. 2017). In particular, a further increase in	
474	temperature, with maximum temperatures in excess of 33°C at present (Chaidez et al. 2017),	
475	might lead to a further imbalance in N cycling in tropical seagrass ecosystems, similar to that	
476	predicted for soil crusts (Zhou et al., 2016). Therefore, the forecasted warming might have an	

21

- 477 important impact on N availability and therefore on seagrass productivity and their capacity to
- 478 mitigate climate change.
- 479 Conclusion
- 480 The studied coastal lagoon ecosystem supported a net loss of reactive N as N₂, with anammox
- 481 accounting for about one-third of N₂ production. However, N₂ fixation supported part of seagrass
- 482 growth. The results presented suggest that, as a consequence of the differential thermal responses
- 483 of processes supporting losses and gains of reactive N, future warming can enhance the role of
- 484 seagrass meadows as sites of reactive N loss in an already warm Red Sea.

485

486 Author contribution

- 487 NG-B and CMD designed the study. NG-B and MF performed the fieldwork. NG-B performed
- 488 the N₂ fixation measurements. MF performed the sediment microprofiles. MA and DRS
- 489 performed the denitrification and anammox activity measurements. NG-B, MF and CMD
- 490 interpreted the results. NG-B wrote the first draft of the manuscript. All authors contributed
- 491 substantially to the final manuscript.
- 492

493 Competing interests

494 The authors declare that they have no conflict of interest.

495

496 Acknowledgements

- 497 This research was funded by King Abdullah University of Science and Technology through
- 498 Baseline funding to C.M.D, D.D. and P.E. S. We thank Mongi Ennasri for his support in sample
- 499 analysis.

500 References

501	Almahasheer, H., Serrano, O., Duarte, C. M., Arias-Ortiz, A., Masque, P., and Irigoien, X.: Low			
502	Carbon sink capacity of Red Sea mangroves, Scientific Reports, 7, 9700, 2017.			
503	Alongi, D. M., Trott, L. A., Undu, M. C., and Tirendi, F.: Benthic microbial metabolism in			
504	seagrass meadows along a carbonate gradient in Sulawesi, Indonesia, Aquatic Microbial			
505	Ecology, 51, 141-152, 10.3354/ame01191, 2008.			
506	Amano, T., Yoshinaga, I., Okada, K., Yamagishi, T., Ueda, S., Obuchi, A., Sako, Y., and Suwa,			
507	Y.: Detection of anammox activity and diversity of anammox bacteria-related 16S rRNA			
508	genes in coastal marine sediment in Japan, Microbes and Environments, 22, 232-242,			
509	2007.			
510	Amano, T., Yoshinaga, I., Yamagishi, T., Van Thuoc, C., Ueda, S., Kato, K., Sako, Y., and			
511	Suwa, Y.: Contribution of anammox bacteria to benthic nitrogen cycling in a mangrove			
512	forest and shrimp ponds, Haiphong, Vietnam, Microbes and environments, 26, 1-6, 2011.			
513	Aoki, L. R., and McGlathery, K. J.: Push-pull incubation method reveals the importance of			
514	denitrification and dissimilatory nitrate reduction to ammonium in seagrass root zone,			
515	Limnology and Oceanography: Methods, 15, 766-781, 2017.			
516	Bale, N. J., Villanueva, L., Fan, H., Stal, L. J., Hopmans, E. C., Schouten, S., and Sinninghe			
517	Damsté, J. S.: Occurrence and activity of anammox bacteria in surface sediments of the			
518	southern North Sea, FEMS microbiology ecology, 89, 99-110, 2014.			
519	Brandsma, J., van de Vossenberg, J., Risgaard-Petersen, N., Schmid, M. C., Engström, P.,			
520	Eurenius, K., Hulth, S., Jaeschke, A., Abbas, B., and Hopmans, E. C.: A multi-proxy			
521	study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord,			
522	Sweden, Environmental microbiology reports, 3, 360-366, 2011.			
523	Breitbarth, E., Mills, M. M., Friedrichs, G., and LaRoche, J.: The Bunsen gas solubility			
524	coefficient of ethylene as a function of temperature and salinity and its importance for			
525	nitrogen fixation assays, Limnology and Oceanography: Methods, 2, 282-288, 2004.			
526	Calleja, M., Marba, N., and Duarte, C. M.: The relationship between seagrass (Posidonia			
527	oceanica) decline and porewater sulfide pools in carbonate sediments., Estuarine, Coastal			
528	and Shelf Science, 73, 583-588, 2007.			
529	Capone, D. G., and Taylor, B. F.: N2 FIXATION IN THE RHIZOSPHERE OF THALASSIA-			
530	TESTUDINUM, Can. J. Microbiol., 26, 998-1005, 1980.			
531	Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M., and Hoteit, I.: Decadal trends in Red Sea			
532	maximum surface temperature, Scientific Reports, 7, 8144, 2017.			
533	Dalsgaard, T., Thamdrup, B., and Canfield, D. E.: Anaerobic ammonium oxidation (anammox)			
534	in the marine environment, Res. Microbiol., 156, 457-464,			
535	http://dx.doi.org/10.1016/j.resmic.2005.01.011, 2005.			
536	Dean Jr, W. E.: Determination of carbonate and organic matter in calcareous sediments and			
537	sedimentary rocks by loss on ignition: comparison with other methods, Journal of			
538	Sedimentary Research, 44, 1974.			
539	Devol, A. H.: Denitrification, anammox, and N2 production in marine sediments, Annual review			
540	of marine science, 7, 403-423, 2015.			
541	Duarte, C. M.: Submerged aquatic vegetation in relation to different nutrient regimes, Ophelia,			
542	41, 87-112, 1995.			
542	Duanta C. M. Middelhuma I. I. and Canada N. Major role of marine superstation on the according			

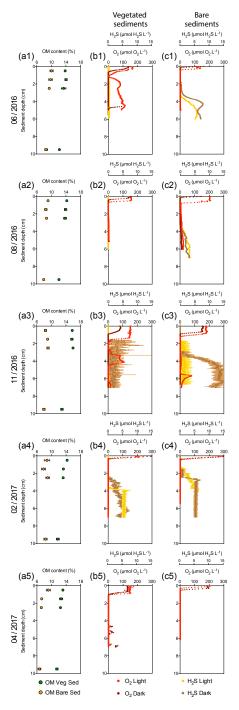
543 Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic
 544 carbon cycle, Biogeosciences, 2, 1-8, 2005.

545	Enriquez, S., Marba, N., Duarte, C. M., van Tussenbroek, B. I., and Reyes-Zavala, G.: Effects of				
546	seagrass Thalassia testudinum on sediment redox, Marine Ecology-Progress Series, 219,				
547	149-158, 2001.				
548	Enríquez, S., Duarte, C. M., and Sand-Jensen, K.: Patterns in decomposition rates among				
549	photosynthetic organisms: the importance of detritus C: N: P content, Oecologia, 94, 457-				
550	471, 1993.				
551	Eyre, B. D., Ferguson, A. J. P., Webb, A., Maher, D., and Oakes, J. M.: Denitrification, N-				
552	fixation and nitrogen and phosphorus fluxes in different benthic habitats and their				
553	contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-				
554	tropical coastal system (southern Moreton Bay, Australia), Biogeochemistry, 102, 111-				
555	133, 10.1007/s10533-010-9425-6, 2011a.				
556	Eyre, B. D., Maher, D., Oakes, J. M., Erler, D. V., and Glasby, T. M.: Differences in benthic				
557	metabolism, nutrient fluxes, and denitrification in Caulerpa taxifolia communities				
558	compared to uninvaded bare sediment and seagrass (Zostera capricorni) habitats,				
559	Limnology and Oceanography, 56, 1737-1750, 10.4319/lo.2011.56.5.1737, 2011b.				
560	Eyre, B. D., Maher, D. T., and Squire, P.: Quantity and quality of organic matter (detritus) drives				
561	N-2 effluxes (net denitrification) across seasons, benthic habitats, and estuaries, Glob.				
562	Biogeochem. Cycle, 27, 1083-1095, 10.1002/2013gb004631, 2013.				
563	Eyre, B. D., Maher, D. T., and Sanders, C.: The contribution of denitrification and burial to the				
564	nitrogen budgets of three geomorphically distinct Australian estuaries: Importance of				
565	seagrass habitats, Limnology and Oceanography, 2016.				
566	Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary production of the				
567	biosphere: integrating terrestrial and oceanic components, Science, 281, 237-240, 1998.				
568	Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins,				
569	A., Grizzetti, B., and Galloway, J. N.: The global nitrogen cycle in the twenty-first				
570	century, Phil. Trans. R. Soc. B, 368, 20130164, 2013.				
571	Fulweiler, R., Brown, S., Nixon, S., and Jenkins, B.: Evidence and a conceptual model for the				
572	co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments,				
573	Marine Ecology Progress Series, 482, 57-68, 2013.				
574	Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B.,				
575	and Cosby, B. J.: The Nitrogen Cascade, BioScience, 53, 341-356, 10.1641/0006-				
576	3568(2003)053[0341:TNC]2.0.CO;2, 2003.				
577	Garcias-Bonet, N., Marba, N., Holmer, M., and Duarte, C. M.: Effects of sediment sulfides on				
578	seagrass Posidonia oceanica meristematic activity, Marine Ecology-Progress Series, 372,				
579	1-6, 2008.				
580	Garcias-Bonet, N., Arrieta, J. M., de Santana, C. N., Duarte, C. M., and Marbà, N.: Endophytic				
581	bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica),				
582	Frontiers in Microbiology, 3, 342, 10.3389/fmicb.2012.00342, 2012.				
583	Garcias-Bonet, N., Arrieta, J. M., Duarte, C. M., and Marba, N.: Nitrogen-fixing bacteria in				
584	Mediterranean seagrass (Posidonia oceanica) roots, Aquatic Botany, 131, 57-60,				
585	10.1016/j.aquabot.2016.03.002, 2016.				
586	Hansen, J. W., Udy, J. W., Perry, C. J., Dennison, W. C., and Lomstein, B. A.: Effect of the				
587	seagrass Zostera capricorni on sediment microbial processes, Marine Ecology Progress				
588	Series, 199, 83-96, 10.3354/meps199083, 2000.				
589	Hemminga, M., Harrison, P., and Van Lent, F.: The balance of nutrient losses and gains in				
590	seagrass meadows, Marine Ecology Progress Series, 85-96, 1991.				

Biogeosciences

591 592	Herbert, R. A.: Nitrogen cycling in coastal marine ecosystems, Fems Microbiol. Rev., 23, 563- 590, 1999.			
593				
594				
595	removal in the OMZ waters of the ocean, in: Methods in enzymology, Elsevier, 223-251,			
596	2011.			
597	Howarth, R. W .: Nutrient limitation of net primary production in marine ecosystems, Annual			
598				
599				
600	marine ecosystems: evolving views over three decades, Limnology and Oceanography,			
601	51, 364-376, 2006.			
602	Isobe, K., Koba, K., Ueda, S., Senoo, K., Harayama, S., and Suwa, Y.: A simple and rapid			
603	GC/MS method for the simultaneous determination of gaseous metabolites, J. Microbiol.			
604 605	Methods, 84, 46-51, 2011a. Isobe, K., Suwa, Y., Ikutani, J., Kuroiwa, M., Makita, T., Takebayashi, Y., Yoh, M., Otsuka, S.,			
606	Senoo, K., and Ohmori, M.: Analytical techniques for quantifying 15N/14N of nitrate,			
607				
608				
609	environments, 26, 46-53, 2011b.			
610	Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N., and			
611	Middelburg, J. J.: Seagrass sediments as a global carbon sink: Isotopic constraints, Glob.			
612	Biogeochem. Cycle, 24, 2010.			
613	Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C. O., and Banta, G.			
614	T.: What is bioturbation? The need for a precise definition for fauna in aquatic sciences,			
615	Marine Ecology Progress Series, 446, 285-302, 2012.			
616	McGlathery, K. J.: Seagrass habitats, in: Nitrogen in the Marine Environment, 2nd ed., edited by:			
617	Capone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J., Elsevier Academic			
618	Press Inc, 525 B Street, Suite 1900, San Diego, Ca 92101-4495 USA, 2008.			
619				
620 621	and microscale distribution of nitrite in a subtropical mangrove sediment, Applied and			
621 622	environmental microbiology, 71, 6142-6149, 2005. Moriarty, D., and O'Donohue, M.: Nitrogen fixation in seagrass communities during summer in			
623	the Gulf of Carpentaria, Australia, Marine and Freshwater Research, 44, 117-127,			
624	http://dx.doi.org/10.1071/MF9930117, 1993.			
625	Nowicki, B. L.: The effect of temperature, oxygen, salinity, and nutrient enrichment on estuarine			
626	denitrification rates measured with a modified nitrogen gas flux technique, Estuarine,			
627	Coastal and Shelf Science, 38, 137-156, 1994.			
628	Pedersen, O., Borum, J., Duarte, C. M., and Fortes, M. D.: Oxygen dynamics in the rhizosphere			
629	of Cymodocea rotundata, Marine Ecology-Progress Series, 169, 283-288, 1998.			
630	Pedersen, O., Colmer, T. D., Borum, J., Zavala-Perez, A., and Kendrick, G. A.: Heat stress of			
631	two tropical seagrass species during low tides-impact on underwater net photosynthesis,			
632	dark respiration and diel in situ internal aeration, New Phytologist, 2016.			
633	Raitsos, D. E., Pradhan, Y., Brewin, R. J. W., Stenchikov, G., and Hoteit, I.: Remote Sensing the			
634	Phytoplankton Seasonal Succession of the Red Sea, PLOS ONE, 8, e64909,			
635	10.1371/journal.pone.0064909, 2013.			

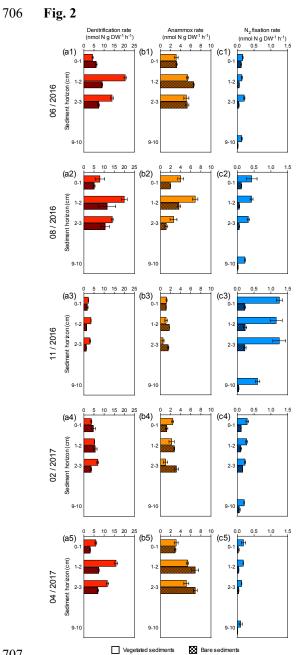
- Raja, S., Thangaradjou, T., Sivakumar, K., and Kannan, L.: Rhizobacterial population density
 and nitrogen fixation in seagrass community of Gulf of Mannar, India, J.Environ.Biol.,
 33, 1033-1037, 2012.
- Salk, K. R., Erler, D. V., Eyre, B. D., Carlson-Perret, N., and Ostrom, N. E.: Unexpectedly high
 degree of anammox and DNRA in seagrass sediments: Description and application of a
 revised isotope pairing technique, Geochimica et Cosmochimica Acta, 211, 64-78, 2017.
- Seitaj, D., Schauer, R., Sulu-Gambari, F., Hidalgo-Martinez, S., Malkin, S. Y., Burdorf, L. D.,
 Slomp, C. P., and Meysman, F. J.: Cable bacteria generate a firewall against euxinia in
 seasonally hypoxic basins, Proceedings of the National Academy of Sciences, 112,
 13278-13283, 2015.
- 646 Seitzinger, S., Harrison, J., Dumont, E., Beusen, A. H., and Bouwman, A.: Sources and delivery
 647 of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient
 648 Export from Watersheds (NEWS) models and their application, Glob. Biogeochem.
 649 Cycle, 19, 2005.
- Thamdrup, B., and Dalsgaard, T.: Production of N2 through anaerobic ammonium oxidation
 coupled to nitrate reduction in marine sediments, Applied and environmental
 microbiology, 68, 1312-1318, 2002.
- Tibbles, B., Lucas, M., Coyne, V., and Newton, S.: Nitrogenase activity in marine sediments
 from a temperate saltmarsh lagoon: modulation by complex polysaccharides, ammonium
 and oxygen, Journal of experimental marine biology and ecology, 184, 1-20, 1994.
- Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W.,
 Schlesinger, W. H., and Tilman, D. G.: Human alteration of the global nitrogen cycle:
 sources and consequences, Ecol. Appl., 7, 737-750, 1997.
- Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P., and Ward, B.: The
 marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of
 climate change, Philosophical Transactions of the Royal Society of London B: Biological
 Sciences, 368, 20130121, 2013.
- Weikert, H.: Plankton and the pelagic environment, in: Red Sea, edited by: Edwards, A. J., and
 Head, S. M., Pergamon Press, Oxford 90-111, 1987.
- Welsh, D. T., Bourgues, S., deWit, R., and Herbert, R. A.: Seasonal variations in nitrogenfixation (acetylene reduction) and sulphate-reduction rates in the rhizosphere of Zostera
 noltii: Nitrogen fixation by sulphate reducing bacteria, Marine Biology, 125, 619-628,
 1996.
- Welsh, D. T.: Nitrogen fixation in seagrass meadows: Regulation, plant-bacteria interactions and
 significance to primary productivity, Ecology Letters, 3, 58-71, 2000.
- Welsh, D. T., Bartoli, M., Nizzoli, D., Castaldelli, G., Riou, S. A., and Viaroli, P.:
 Denitrification, nitrogen fixation, community primary productivity and inorganic-N and
 oxygen fluxes in an intertidal Zostera noltii meadow, Marine Ecology-Progress Series,
 208, 65-77, 2000.
- Welsh, D. T.: It's a dirty job but someone has to do it: the role of marine benthic macrofauna in
 organic matter turnover and nutrient recycling to the water column, Chemistry and
 Ecology, 19, 321-342, 2003.
- Wilson, S. T., Böttjer, D., Church, M. J., and Karl, D. M.: Comparative Assessment of Nitrogen
 Fixation Methodologies, Conducted in the Oligotrophic North Pacific Ocean, Applied
 and Environmental Microbiology, 78, 6516-6523, 10.1128/aem.01146-12, 2012.



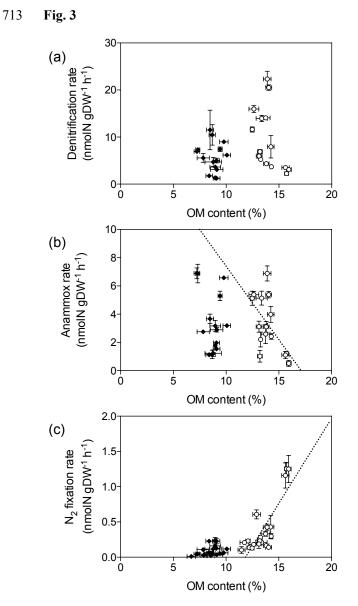
- 681 Yoshinaga, I., Amano, T., Yamagishi, T., Okada, K., Ueda, S., Sako, Y., and Suwa, Y.: 682 Distribution and diversity of anaerobic ammonium oxidation (anammox) bacteria in the 683 sediment of a eutrophic freshwater lake, Lake Kitaura, Japan, Microbes and
- environments, 26, 189-197, 2011. 684
- Zarnoch, C. B., Hoellein, T. J., Furman, B. T., and Peterson, B. J.: Eelgrass meadows, Zostera 685 686 marina (L.), facilitate the ecosystem service of nitrogen removal during simulated 687 nutrient pulses in Shinnecock Bay, New York, USA, Marine pollution bulletin, 124, 376-688 387, 2017.
- Zhou, X., Smith, H., Silva, A. G., Belnap, J., and Garcia-Pichel, F.: Differential responses of 689 690 dinitrogen fixation, diazotrophic cyanobacteria and ammonia oxidation reveal a potential 691 warming-induced imbalance of the N-cycle in biological soil crusts, PloS one, 11, e0164932, 2016.
- 692
- 693

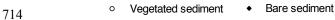
694 Figure 1

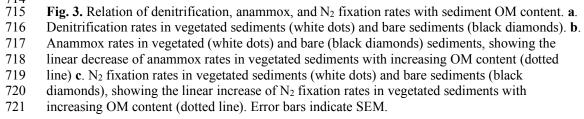
695



- 696 Fig. 1. Characterization of *Enhalus acoroides* seagrass vegetated sediments and adjacent bare
- 697 sediments at five samplings times along the year. **a1-5**. Sediment organic matter content in
- 698 vegetated (green dots) and bare (orange dots) sediment horizons. **b1-5**. Vegetated sediment O₂
- 699 microprofiles under light (light red) and dark (dark red) incubations and H₂S microprofiles
- $\label{eq:2.1} \begin{array}{l} \mbox{during light (yellow) and dark (brown) incubations (no data available for H_2S profiles on the last } \end{array}$
- sampling). c1-5. Bare sediment O₂ microprofiles under light (light red) and dark (dark red)
- 702 incubations and H₂S microprofiles under light (yellow) and dark (brown) incubations (no data
- 703 available for H_2S profiles on the last sampling).
- 704
- 705


707


Fig. 2. Sediment profiles of denitrification, anammox and N₂ fixation rates at five samplings times. a1-5. Sediment denitrification rates in vegetated (red) and bare (red square pattern)
sediment horizons. b1-5. Sediment anammox rates in vegetated (orange) and bare (orange square


711 pattern) sediment horizons. **c1-5**. Sediment N_2 fixation rates in vegetated (blue) and bare (blue

722

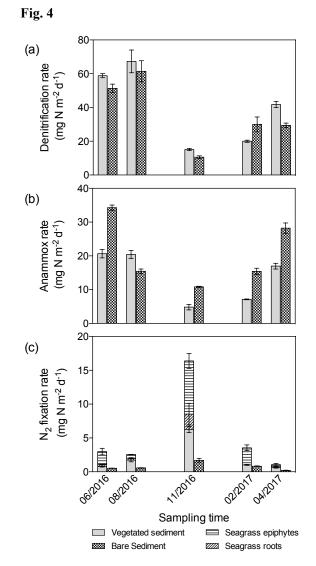
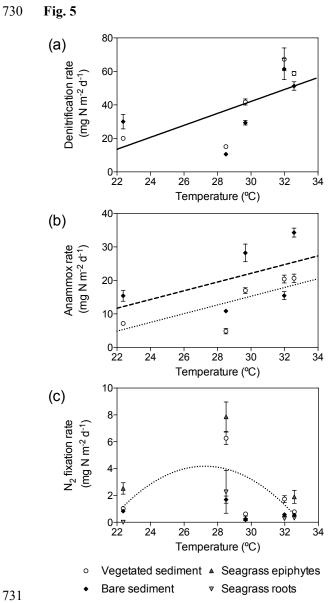
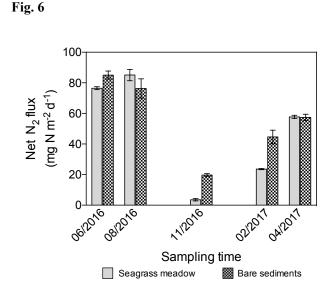


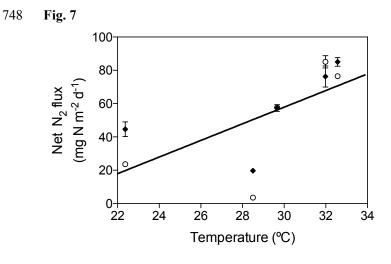
Fig. 4. Area integrated sediment rates along the year. a. Denitrification rates in vegetated (gray)
and bare (square pattern) sediments. b. Anammox rates in vegetated (gray) and bare (square
pattern) sediments. c. N₂ fixation rates in vegetated (gray) and bare (square pattern) sediments
and in seagrass roots (angled stripes) and epiphytes (horizontal stripes). Error bars indicate SEM.




Fig. 5. Relation of denitrification, anammox, and N2 fixation rates with in situ seawater 733 734 temperature. a. Linear increase of denitrification rates (solid line) with temperature, showing 735 denitrification rates in vegetated sediments (white dots) and bare sediments (black diamonds). b. Linear increase of anammox rates in vegetated (dotted line and white dots) and bare (dashed line 736 and black diamonds) sediments. \mathbf{c} . Thermal response of N₂ fixation rates in vegetated sediments 737 738 (white dots), bare sediments (black diamonds), seagrass epiphytes (triangles) and roots (upside 739 down triangles), showing the fitted second-degree polynomial curve in vegetated sediment 740 (dotted line). Error bars indicate SEM.

741

742


743 Seagrass meadow Bare sediments
744
745 Fig. 6. Net N₂ flux in seagrass meadow (gray) and bare sediment (square pattern gray) along the

year, considering sediment denitrification and anammox as N losses and sediment and seagrass

roots and epiphytes N₂ fixation as new N inputs. Error bars indicate SEM.

Seagrass meadow
 Bare sediment

749 750

Fig. 7. Linear increase (solid line) of net N₂ fluxes in vegetated (white dots) and bare (black

752 diamonds) sediments. Error bars indicate SEM.

753

- 754 **Table 1.** Annual variation of *in situ* seawater temperature. Mean seawater temperature values are
- 755 daily averages of *in situ* seawater temperature and temperature range indicate daily oscillations
- 756 (minimum maximum). Seawater temperature was recorded every 10 min during 24 h for each
- 757 sampling event.
- 758

Sampling time	Mean Seawater Temperature (°C)	Seawater Temperature Range (°C)
06/2016	32.5	31.6 - 33.6
08/2016	31.9	31.1 - 32.8
11/2016	28.4	27.7 - 29.2
02/2017	22.3	21.3 - 22.8
04/2017	29.5	28.7 - 30.0